水源热泵工作原理
水源热泵工作原理推荐文章1:
水源热泵工作原理推荐文章2:热泵结构及主要部件
从热泵的运行原理上来分,可分为蒸汽压缩式热泵、吸收式热泵、半导体热泵和化学热泵等;
从热水的加热方式和特征上来分,又可分为分体静态加热式,循环加热式和直热加热式;
从热源的分,可以分为水源热泵、土源热泵、废水源热泵、空气源热泵、太阳能热泵;
从热泵驱动能源来讲,又可分为电动热泵、燃油或燃气热泵、蒸汽(吸收式)热泵等;
从使用方式上来分,可分为即开即热式和储热式。
不同制热类型的热泵:
吸收式热泵:
吸收式热泵没有压缩机,它是以热能为动力,利用一些某种溶液对另一种溶液的强烈吸收性,来实现将热量从蒸发器转移到冷凝器的。
由于吸收式制冷(热泵)能够利用温度较低的热量运行,所以是利用工业废热等低品位热能的有效手段。
吸收式热泵由发生器、吸收器、节流阀、冷凝器、蒸发器、液体阀和溶液泵等部件组成,原理如下图:
气体绝热膨胀制冷:
涡流制冷:
磁制冷:
就是利用磁热效应,又称磁卡效应制冷.
磁热效应是指融制冷工质在等温磁化时向外界放出热量,而绝热去磁时温度降低,从外界吸收热量的现象.磁制冷技术中的制冷工质是固态的磁性材料。
如果把这样两个绝热去磁引起的吸热过程和绝热磁化引起的放热过程用一个循环连接起来,通过外加磁场,有意识地控制磁惰,就可使得磁性材料不断地从一端吸热而在另一端放热,从而达到制冷的目的。
磁热效应:
利用磁致冷材料的磁热效应(基本原理是磁性材料的磁化放热和退磁吸热)。
基于材料的磁热效应和一定的热力流程可以构成磁制冷循环。
半导体制冷(热泵):
半导体制冷(热泵),又称热电制冷(制热),不同的半导体联结成的回路,在其两端施加电压时,不同的半导体之间将有电流并伴随着热运动现象,利用这种现象而制成的装置称为半导体制冷(热泵)装置;
P、N型半导体用于制冷的结构原理:
半导体制冷(热泵)效率的高低在很大程度上取决于热电堆冷热端的温差,在冷热端温差很小的情况下,半导体热泵的效率还是相当高的。
蒸汽压缩制冷原理:
?
蒸汽压缩式热泵热水器,不管是哪一种类型,它的主机都是由压缩机、冷凝器、节流装置和蒸发器四大部件组成;
为了更好的保证热泵系统的正常工作,热泵系统还必须设置气液分离器、高低压保护器、超温保护器、自动控制器、机械式泄压阀、四通阀、电磁阀、单向阀、曲轴箱加热带、储液器等大量零部件。
采用地下水的水源热泵示意图:
土源热泵系统原理:
是以土壤为热源的热泵装置,它将土壤换热器埋入地下,通过载热剂将大地深处的热量带出,通过热泵提升温度后供采暖和生活热水所用,土壤源热泵避开了地下水源热泵的回灌问题,同时也避免了地下水的腐蚀、结垢等一系列麻烦,无污染,系统洁净,是土壤源热泵的最大优势。
但是它的应用也有如下问题:由于土壤的导热性能极差,使土壤源热泵的冷端向土壤取热十分困难。
太阳能热泵:
太阳能热泵热水器,是通过直接利用太阳辐射能和环境空气为热源的热泵机组,它有两种型式:即集热板直接作为蒸发器的“直接膨胀式”,和以太阳能集热板吸收的热量通过一个换热器进行蒸发的“间接膨胀式”。热泵用的太阳能集热器,也可以分为带有透光板和保温措施的普通平板集热器和仅有金属板芯的集热器,这种集热器和空气直接接触,虽然在有阳光时增加了散热损失,但是也具备了在阴雨天的工作能力。
空气源热泵热水装置和主要部件:
根据压缩的原理,压缩机大致分为容积式压缩机和速度式压缩机两大类;
根据压缩机的密封结构分类:压缩机可以分为开启式压缩机、半封闭式压缩机和全封闭式压缩机三大类;
双、单滚动转子式压缩机:
在当前的小型家用热泵热水器系列产品中,占有最主要的地位,绝大多数家用热泵热水器都采用这种型式的压缩机。
滚动转子压缩机运行平稳,产量大,价格低,在动平衡上,较活塞式表现更好;双转子运行更好;
不利的是,压缩机壳体是高压腔,对电机绕组运行不利,也对润滑不利 。
涡旋式压缩机:
涡旋压缩机的定盘和动盘:
由于涡旋式压缩机中,其涡旋有若干层(例如三层),因此,在其旋转过程中,吸气、压缩和排气等过程是同时在不同层的压缩室内进行的,一个压缩室的形成到完成排气,要经过若干周才能够完成,在外部的压缩室,曲轴每旋转一周就完成一个吸气过程,而接近中心部位的压缩室则不断进行排气过程,压缩室和相邻压缩室的压力差更小,故扭矩均衡,运转平和,内部泄露小,容积效率高。工作也更加可靠。
涡旋式压缩机壳体为低压腔。
电动机主要部件的功能:铁芯,包括定子铁心和转子铁心,用以构成电动机的磁路;
定子绕组分为工作绕组和启动绕组,为防止每圈(匝)之间短路,采用高强度聚脂漆包线绕制,分别为电动机提供工作力矩和启动力矩;
启动电容为电机启动使使交流电相位偏移,和启动绕组一起为电机转子提供启动力矩;
电机端盖和轴承起到支撑转子正常运转的作用;
转子接受旋转磁场的力并对外输出功;
机座则整个电动机提供定位、围护以及散热。
蒸发器和冷凝器:
空气源热泵热水器,是以空气为热源来实现“加热”水的目的的,直接完成从空气中吸取热量的器件,就是蒸发器;
空气源热泵热水器的蒸发器,全部采用管翅式结构,更具体一点,是铜管铝翅片式,也有教科书称其为“翅片管式换热器”,或“肋片管式换热器”。
在蒸发器的管内进行的是氟利昂的沸腾吸热过程,由于空气侧的换热系数较低,为了增加换热能力,在不增加传热温差ΔT的前提条件下,唯有加强换热系数和增大换热面积。
风冷蒸发器结构示意图:
与空调器室外机的翅片管式冷凝换热器不同的是,热泵热水器的蒸发器由于经常处于湿润的状态,为提高外表面的换热系数,有利于冷凝水的流动,消除翅片间的“水桥”现象,蒸发器的铝翅片采用“亲水铝箔”。
用以增加空气的扰动的“气窗”:
为了减少蒸发器内制冷剂的流动阻力,减少流动损失,一般蒸发器会分若干路并联进入蒸发器,如上图,制冷剂由分液头分为四路进入蒸发器,为保证各路制冷剂的尽量流量相同,分液头之后的铜管要等长、等距、等径、同程。
蒸发器的多种形态:
电机和风叶:
风机朝向可以向上及向侧面:
热泵冷凝器的种类和特点:
可分为三个大类:
即对全部容积的水直接进行加热的容积式冷凝器(静态加热方式);
以对全部的水进行循环加热的循环加热式冷凝器(动态加热方式);
和一次性将水的温度加热到设定温度,再输送至保温水箱的直热式冷凝器。
静态加热冷凝器的两种布置方法:
循环加热式套管冷凝器:
套管广泛应用于热泵热水器;
优点是效率高,无运行死区,抗垢和抗冻能力强,可长程逆流式的高效换热器;多束管基本停用;缺点是占空间大。
螺旋管式套管换热器成品和螺旋管及实物剖图:
各种异型铜管:
小型化的壳管式换热器:
将铜肋管盘成螺圈置于钢管内的管-管换热器,水在铜管内流通,制冷剂在钢管内流动,钢管起一定的储液器作用。占用空间小,但是弱逆程换热,不利于高温制热。
板式换热器:
由一系列具有一定波纹形状的金属片叠装而成,各板片之间形成薄而狭窄的通道,相邻的两片之间进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高。
板式换热器的单片形状:
板式换热器流体的流动路线:
装配型板式换热器可以制造的很大,因此换热量也大,广泛应用于船舶、冶金、食品、机械、石油化工、生活区集中供热、空调等。
也可作为泳池、水产养殖等用途的二次换热装置。
管壳式换热器:
主要用于大型制冷(热泵)机组:
节流装置:毛细管和膨胀阀
节流装置是制冷和热泵系统不可缺少的四大部件之一,起着节制制冷剂流量,建立系统高低压力差的重要作用;
节流装置的结构可以极其简单,如毛细管,也可以相对复杂,如热力膨胀阀、电子膨胀阀和膨胀机等。
一般小型热泵系统,采用毛细管;较大型的机组采用热力膨胀阀、电子膨胀阀。
节流阀的调整:
过热度,空调术语,是将干饱和蒸汽继续定压加热,蒸汽温度就要上升,而超过饱和温度,其超过的温度就叫过热度。
过热度(superheat)这个术语,用于热力膨胀阀是指低压侧和感温包内蒸气之间的温度差。通常将系统调节在5-8℃)过热度下工作。
过热度对于膨胀阀的正常工作起着举足轻重的作用。吸气如果完全无过热度,就有可能发生液击,引起湿冲程液击损坏压缩机。
为了避免此种现象,需要一定的吸气过热度,以保证只有干蒸汽进入压缩机(因冷媒性质决定,过热度的存在表示液态冷媒的完全蒸发)。
但是,过热度偏高会引起压缩机排气温度(排气过热度)升高,压缩机运行工况恶化寿命降低。所以,吸气过热度应该控制在5℃-8℃范围。
毛细管:
毛细管,是一根长度在0.5-5米不等,内经0.5mm-3mm的细铜管,结构十分简单,工作可靠,成本低廉,本身没有运动和密封部件,焊接在冷凝器和蒸发器之间,一般不会出现泄漏等故障,毛细管具有一定程度的自动调节制冷剂流量的功能,当压力差增大时能够增大制冷剂流量,使系统得到一定程度的平衡;
热力膨胀阀:
热力膨胀阀:热力膨胀阀,又称为感温调节阀或者自动调节阀,它可以根据流出蒸发器的制冷剂温度来调节进入蒸发器的制冷剂流量,热力膨胀阀,按其流量调节类型的不同分为内平衡式膨胀阀和外平衡式膨胀阀两种。
膨胀阀在系统中的安装方法:
电子膨胀阀:
电子膨胀阀,是利用电信号直接控制膨胀阀上的电流或电压来改变针阀运动的节流装置,反应灵敏准确,流量控制范围大,可以预定程序,依照系统实际工作时的蒸发器信号进行控制;
按执行机构的型式不同分为电磁式和电动式两类。
热泵热水器系统多采用电动式。
电动式电子膨胀阀结构示意图:
电子膨胀阀的开度可在0-100%的范围内进行精确调节,从全闭到全开状态可在极短时间内完成,反应和动作速度快,开闭特性和速度均可在控制程序中设定。在结霜程度不很严重的地区,还可以以电子膨胀阀全开的方式进行旁通除霜。
热泵热水器使用的电子膨胀阀,一般由吸气过热度控制,由压力传感器和温度传感器提供信号,控制器执行调节动作;工作时,压力传感器将蒸发器出口压力信号、温度传感器将压缩机吸气温度信号传给控制器,控制器将信号处理后,输出电脉冲作用于电子膨胀的步进电机,将阀调节到所需要的位置。
电子膨胀阀可通过事先预制的程序,在各个工况下精确的控制节流状态,提高系统的能效比和可靠性。 对于热泵热水器这样工作温度范围宽广的装置,应该考虑采用电子膨胀阀,在选配时应对各个工况做充分的匹配实验。
四通阀:四通阀是热泵热水器系统除霜时,用以改变制冷剂流动方向的器件。
空气源热泵热水器,有很多种除霜方式,例如旁通除霜、电热除霜、热水除霜等,但是四通阀反冲除霜是最主要的方法;
在热泵热水器正常制热时,四通阀线圈不通电,其装配方向,恰与空调相反。
四通阀是空气源热泵热水器在寒冷季节进行除霜的重要部件;
但是采用其他方式如旁通除霜、电融霜和自然除霜的机组上,可以不设置四通阀。
采用直热加热方式的空气源热泵装置,如果未设置循环加热水泵,由于没有办法向冷凝器提供热源,也无法采用四通阀,可采用旁通方式除霜。
本文于互联网,暖通南社整理编辑。
水源热泵工作原理推荐文章3:别让热泵“冷”下来
能源短缺叠加寒冬将至,有消息显示,近期我国生产的“取暖套装”在欧洲市场走俏。除了电热毯、热水袋、暖手宝、保温杯等小物件外,售价数万元的热泵也遭到抢购。据海关数据,2022年1月至8月我国热泵出口额达到8亿美元,同比增长62%。根据欧盟的相关计划,为减少对俄罗斯化石燃料的依赖,未来5年内还将大幅提升热泵的安装数量。
作为取暖设备,热泵在我国并不为人们所熟悉,为何一跃成为欧洲人的“取暖神器”?这要从热泵的原理说起。类似于水往低处流,自然条件下热量也是从高温物体流向低温物体。利用电能驱动和热力学逆循环,热泵可以从空气、土壤、水源等自然界中吸收热量,把处在较低温度下的热量提升到较高的温度水平下释放出来,以满足热量的使用要求。在这个过程中,热泵并不是直接将电能转化为热能,电能只是驱动了压缩机,将室外热量“搬运”到室内。简单来说,热泵就是“温度搬运工”。
正是基于这个工作原理,空气能热泵采暖比直接将电能转化成热能效率要高很多,一般来说泵的热效率很高,通常可达300%以上,即1份电能可搬运3至4份低位热能,因此理论上比直接用电取暖要节省75%的电费,跟燃气供暖相比效率也更高,跟散煤供暖比则更加低碳环保。随着欧洲能源短缺、价格居高不下,加上欧洲各国的高额补贴,更为高效节能的热泵广受各国政府和消费者青睐。欧盟推进的碳中和政策也在长期范围内支撑更为环保的热泵普及。在不少欧洲国家,新建建筑中热泵供热面积已持续超过燃气供热面积。
热泵在我国“双碳”进程中的独特作用同样不容忽视。供热和制冷是全球最大的终端能源消费,住宅、工业部门以及其他用途的供热制冷约占全球总能耗的一半,供热和制冷也是导致空气污染的主要原因之一。因此,提升供热和制冷部门的效率,是拉动一国低碳发展,保障能源安全的重要措施。对我国而言,供热和制冷也是实现碳中和目标需要关注的重点领域。国务院印发的《2030年前碳达峰行动方案》提出,深化可再生能源建筑应用,因地制宜推行热泵、生物质能、地热能、太阳能等清洁低碳供暖。引导夏热冬冷地区科学取暖,因地制宜采用清洁高效取暖方式。积极推广热泵技术和产品,也是我国深入推进能源革命,加快规划建设新型能源体系的必然之选。
近年来,在我国清洁取暖政策的驱动下,热泵供暖技术替代燃煤取暖,在我国北方农村地区快速发展。但在进一步推广过程中仍存在一些障碍,比如,虽然热泵使用成本较低,但初始供能系统投资成本劣势比较大,动则上万元的装机费用让消费者望而却步。同时,不匹配的机型选用、粗放的安装和运维水平,造成热泵系统实际运行能效低,甚至导致部分项目无法运行,使得热泵系统没有发挥其应有的节能减排作用,影响了消费者对热泵的信心。此外,低位热源决定的热泵供能强度,限制了其在严寒地区集中供热以及工业领域的应用。以上问题使得热泵渗透率仍然较低,尤其是2018年“煤改电”政策调整后,市场出现了较大幅度下滑。
热泵技术优势独特,应用前景广阔,我国应充分重视对热泵技术推广的支持,别让热泵“冷”下来。基于各地资源禀赋、电网能力和政府财政情况,给予安装热泵产品合理资金补贴,并制定差异化电价优惠政策,尤其在风光电资源充足、电能本地消化不足、集中供暖无法覆盖的区域,可加大电价支持力度。针对热泵市场产品和工程质量鱼龙混杂的现状,有关部门应重视标准建设、加强市场监管,指导各地因地制宜,选择适合的热泵采暖技术方式,在合适场合、适当条件下使用热泵,全方位提升工程安装、售后维护水平,以获得真正的节能效果。
技术创新是扩大热泵应用范围的关键一环。以现有技术条件和产业水平来看,热泵技术还有更大的发展空间、更好的应用性能。需进一步改善热泵系统的环境及应用适应性,提高热泵低温供热性能和扩大热泵高温供热的应用范围,提升热泵机组稳定性和使用寿命。开发复合集成高效热泵技术产品,以便适应多元化应用的需求,推动热泵在更广阔的地理区域和生产领域应用。
: 经济日
水源热泵工作原理推荐文章4:
水源热泵工作原理推荐文章5:水源热泵丨水源热泵中央空调的原理、分类及优点
水源热泵是改变循环水、冷却水的水流方向,并通过阀门切换来实现夏天制冷、冬天制热的功能,水源热泵技术具有性能稳定,设计安装简便的优点,因此这种技术是有着非常广阔的发展空间。
热泵的工作原理及种类
01、工作原理
根据热力学第二定律,热可以自发地由高温物体传向低温物体,而由低温物体传向高温物体则必须作功,正如水能够通过水泵从低处向高处流动一样,热泵系统实现了把能量由低温物体向高温物体的传递,它是以花费一部分高质能(耗电)为代价,从自然环境中获取能量,并连同所花费的高质能一起向用户供热,也就是说热泵的供热量永远大于所消耗的功量,所以是综合利用能源的一种很有价值的措施。
热泵的硬件组成和制冷系统大致相同,也是由压缩机、蒸发器、冷凝器、膨胀阀等主要部件组成。只是制冷是从制冷房间吸热到冷凝器散发给冷却介质,热泵是制冷工况的逆过程,即把热量从冷凝器的介质吸收过来散发到制热房间中。
02、技术分类
热泵技术按所需热源的不同大体可分为空气源热泵、地源热泵及水源热泵。
1、空气源热泵即通常所说的风冷热泵,是以室外空气作为热源,是目前应用最为广泛的热泵系统,现已成为市场上的主导产品,但这种热泵的应用有其局限性,在我国北方寒冷的冬季,随着室外温度的降低,热泵效率大大降低,而且蒸发器极易结冰,需消耗电能解冻,很不经济,因此这种热泵仅适用于我国黄河以南,冬季室外气温较高的地区使用。
2、地源热泵是将换热盘管深埋于地下,吸收土壤中的低温热量进行供热,由于全年土壤温度波动较小,地源热泵的季节工况较为恒定。
3、水源热泵是目前我国应用较多的热泵形式,它是以水(包括江、河、湖泊、地下水等)作为冷热源体,在冬季利用热泵吸收其热量向建筑供暖,在夏季热泵将吸收到的热量向其排放,实现对建筑物的供冷。在水源热泵的应用当中,又以利用地下水的地下水水源热泵应用较为广泛。其工作原理大都是通过外部管道及阀门的切换来实现冬夏工况的转换,夏季空调供回水走蒸发器,地下水走冷凝器,冬季空调供回水走冷凝器,地下水走蒸发器。下面我们重点讲一下水源热泵中央空调。
水源热泵中央空调的优点
01、高效节能
水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出20~60%,运行费用仅为普通中央空调的40~60%。
02、属于可再生能源利用技术
水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。
03、节水省地
以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。
04、环保效益显著
水源热泵机组供热时省去了燃煤、燃气、燃油等锅炉房系统,无燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷却塔的噪音、霉菌污染及水耗。所以,水源热泵机组运行无任何污染,无燃烧、无排烟,不产生废渣、废水、废气和烟尘,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。
05、一机多用,应用范围广
水源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。特别是对于同时有供热和供冷要求的建筑物,水源热泵有着明显的优点。不仅节省了大量能源,而且用一套设备可以同时满足供热和供冷的要求,减少了设备的初投资。其总投资额仅为传统空调系统的60%,并且安装容易,安装工作量比传统空调系统少,安装工期短,更改安装也容易。水源热泵可应用于宾馆、商场、办公楼、学校等建筑,小型的水源热泵更适合于别墅、住宅小区的采暖、供冷。
特灵(中国)城市展厅
地址:上海市宝山区汶水路999号特灵(中国)城市展厅
水源热泵工作原理推荐搜索词:
1.
2.
3.
本文标题:水源热泵工作原理
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。